Original Article
TNFRSF10C copy number variation is associated with metastatic colorectal cancer
Abstract
Background: Genetic markers for distant metastatic disease in patients with colorectal cancer (CRC) are not well defined. Identification of genetic alterations associated with metastatic CRC could help to guide systemic and local treatment strategies. We evaluated the association of tumor necrosis factor receptor superfamily member 10C (TNFRSF10C) copy number variation (CNV) with distant metastatic disease in patients with CRC using The Cancer Genome Atlas (TCGA).
Methods: Genetic sequencing data and clinical characteristics were obtained from TCGA for all available patients with CRC. There were 515 CRC patient samples with CNV and clinical outcome data, including a subset of 144 rectal adenocarcinoma patient samples. Using the TCGA CRC dataset, CNV of TNFRSF10C was evaluated for association with distant metastatic disease (M1 vs. M0). Multivariate logistic regression analysis with odds ratio (OR) using a 95% confidence interval (CI) was performed adjusting for age, T stage, N stage, adjuvant chemotherapy, gender, microsatellite instability (MSI), location, and surgical margin status.
Results: TNFRSF10C CNV in patients with CRC was associated with distant metastatic disease [OR 4.81 (95% CI, 2.13–10.85) P<0.001] and positive lymph nodes [OR 18.83 (95% CI, 8.42–42.09)]; P<0.001) but not MSI (OR P=0.799). On multivariate analysis, after adjusting for pathologic T stage, N stage, adjuvant chemotherapy, gender, and MSI, TNFRSF10C CNV remained significantly associated with distant metastatic disease (OR P=0.018). Subset analysis revealed that TNFRSF10C CNV was also significantly associated with distant metastatic disease in patients with rectal adenocarcinoma (OR P=0.016).
Conclusions: TNFRSF10C CNV in patients with CRC is associated with distant metastatic disease. With further validation, such genetic profiles could be used clinically to support optimal systemic treatment strategies versus more aggressive local therapies in patients with CRC, including radiation therapy for rectal adenocarcinoma.
Methods: Genetic sequencing data and clinical characteristics were obtained from TCGA for all available patients with CRC. There were 515 CRC patient samples with CNV and clinical outcome data, including a subset of 144 rectal adenocarcinoma patient samples. Using the TCGA CRC dataset, CNV of TNFRSF10C was evaluated for association with distant metastatic disease (M1 vs. M0). Multivariate logistic regression analysis with odds ratio (OR) using a 95% confidence interval (CI) was performed adjusting for age, T stage, N stage, adjuvant chemotherapy, gender, microsatellite instability (MSI), location, and surgical margin status.
Results: TNFRSF10C CNV in patients with CRC was associated with distant metastatic disease [OR 4.81 (95% CI, 2.13–10.85) P<0.001] and positive lymph nodes [OR 18.83 (95% CI, 8.42–42.09)]; P<0.001) but not MSI (OR P=0.799). On multivariate analysis, after adjusting for pathologic T stage, N stage, adjuvant chemotherapy, gender, and MSI, TNFRSF10C CNV remained significantly associated with distant metastatic disease (OR P=0.018). Subset analysis revealed that TNFRSF10C CNV was also significantly associated with distant metastatic disease in patients with rectal adenocarcinoma (OR P=0.016).
Conclusions: TNFRSF10C CNV in patients with CRC is associated with distant metastatic disease. With further validation, such genetic profiles could be used clinically to support optimal systemic treatment strategies versus more aggressive local therapies in patients with CRC, including radiation therapy for rectal adenocarcinoma.